Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Antimicrob Agents Chemother ; 68(2): e0093723, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38169282

RESUMO

Entering a dormant state is a prevailing mechanism used by bacterial cells to transiently evade antibiotic attacks and become persisters. The dynamic progression of bacterial dormancy depths driven by protein aggregation has been found to be critical for antibiotic persistence in recent years. However, our current understanding of the endogenous genes that affects dormancy depth remains limited. Here, we discovered a novel role of phage shock protein A (pspA) gene in modulating bacterial dormancy depth. Deletion of pspA of Escherichia coli resulted in increased bacterial dormancy depths and prolonged lag times for resuscitation during the stationary phase. ∆pspA exhibited a higher persister ratio compared to the wild type when challenged with various antibiotics. Microscopic images revealed that ∆pspA showed accelerated formation of protein aggresomes, which were collections of endogenous protein aggregates. Time-lapse imaging established the positive correlation between protein aggregation and antibiotic persistence of ∆pspA at the single-cell level. To investigate the molecular mechanism underlying accelerated protein aggregation, we performed transcriptome profiling and found the increased abundance of chaperons and a general metabolic slowdown in the absence of pspA. Consistent with the transcriptomic results, the ∆pspA strain showed a decreased cellular ATP level, which could be rescued by glucose supplementation. Then, we verified that replenishment of cellular ATP levels by adding glucose could inhibit protein aggregation and reduce persister formation in ∆pspA. This study highlights the novel role of pspA in maintaining proteostasis, regulating dormancy depth, and affecting antibiotic persistence during stationary phase.


Assuntos
Antibacterianos , Agregados Proteicos , Antibacterianos/farmacologia , Escherichia coli/genética , Trifosfato de Adenosina/metabolismo , Glucose/metabolismo
2.
BMC Microbiol ; 23(1): 341, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974063

RESUMO

BACKGROUND: Candida glabrata is an important cause of invasive candidiasis. Echinocandins are the first-line treatment of invasive candidiasis caused by C. glabrata. The epidemiological echinocandin sensitivity requires long-term surveillance and the understanding about whole genome characteristics of echinocandin non-susceptible isolates was limited. RESULTS: The present study investigated the echinocandin susceptibility of 1650 C. glabrata clinical isolates in China from August 2014 to July 2019. The in vitro activity of micafungin was significantly better than those of caspofungin and anidulafungin (P < 0.001), assessed by MIC50/90 values. Whole genome sequencing was conducted on non-susceptible isolates and geography-matched susceptible isolates. Thirteen isolates (0.79%) were resistant to at least one echinocandin. Six isolates (0.36%) were solely intermediate to caspofungin. Common evolutionary analysis of echinocandin-resistant and echinocandin-intermediate isolates revealed genes related with reduced caspofungin sensitivity, including previously identified sphinganine hydroxylase encoding gene SUR2. Genome-wide association study identified SNPs at subtelometric regions that were associated with echinocandin non-susceptibility. In-host evolution of echinocandin resistance of serial isolates revealed an enrichment for non-synonymous mutations in adhesins genes and loss of subtelometric regions containing adhesin genes. CONCLUSIONS: The echinocandins are highly active against C. glabrata in China with a resistant rate of 0.79%. Echinocandin non-susceptible isolates carried common evolved genes which are related with reduced caspofungin sensitivity. In-host evolution of C. glabrata accompanied intensive changing of adhesins profile.


Assuntos
Candidíase Invasiva , Equinocandinas , Humanos , Equinocandinas/farmacologia , Equinocandinas/genética , Equinocandinas/uso terapêutico , Candida glabrata/genética , Caspofungina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Estudo de Associação Genômica Ampla , Testes de Sensibilidade Microbiana , Candidíase Invasiva/tratamento farmacológico , China , Farmacorresistência Fúngica/genética
4.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833866

RESUMO

The infection of implanted biomaterial scaffolds presents a major challenge. Existing therapeutic solutions, such as antibiotic treatment and silver nanoparticle-containing scaffolds are becoming increasingly impractical because of the growth of antibiotic resistance and the toxicity of silver nanoparticles. We present here a novel concept to overcome these limitations, an electrospun polycaprolactone (PCL) scaffold functionalised with zinc oxide nanowires (ZnO NWs). This study assessed the antibacterial capabilities and biocompatibility of PCL/ZnO scaffolds. The fabricated scaffolds were characterised by SEM and EDX, which showed that the ZnO NWs were successfully incorporated and distributed in the electrospun PCL scaffolds. The antibacterial properties were investigated by co-culturing PCL/ZnO scaffolds with Staphylococcus aureus. Bacterial colonisation was reduced to 51.3% compared to a PCL-only scaffold. The biocompatibility of the PCL/ZnO scaffolds was assessed by culturing them with HaCaT cells. The PCL scaffolds exhibited no changes in cell metabolic activity with the addition of the ZnO nanowires. The antibacterial and biocompatibility properties make PCL/ZnO a good choice for implanted scaffolds, and this work lays a foundation for ZnO NWs-infused PCL scaffolds in the potential clinical application of tissue engineering.


Assuntos
Nanopartículas Metálicas , Nanofios , Óxido de Zinco , Tecidos Suporte , Óxido de Zinco/farmacologia , Prata , Engenharia Tecidual , Antibacterianos/farmacologia , Poliésteres
5.
Front Genet ; 14: 1082032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760999

RESUMO

Multi-omics data integration has emerged as a promising approach to identify patient subgroups. However, in terms of grouping genes (or gene products) into co-expression modules, data integration methods suffer from two main drawbacks. First, most existing methods only consider genes or samples measured in all different datasets. Second, known molecular interactions (e.g., transcriptional regulatory interactions, protein-protein interactions and biological pathways) cannot be utilized to assist in module detection. Herein, we present a novel data integration framework, Correlation-based Local Approximation of Membership (CLAM), which provides two methodological innovations to address these limitations: 1) constructing a trans-omics neighborhood matrix by integrating multi-omics datasets and known molecular interactions, and 2) using a local approximation procedure to define gene modules from the matrix. Applying Correlation-based Local Approximation of Membership to human colorectal cancer (CRC) and mouse B-cell differentiation multi-omics data obtained from The Cancer Genome Atlas (TCGA), Clinical Proteomics Tumor Analysis Consortium (CPTAC), Gene Expression Omnibus (GEO) and ProteomeXchange database, we demonstrated its superior ability to recover biologically relevant modules and gene ontology (GO) terms. Further investigation of the colorectal cancer modules revealed numerous transcription factors and KEGG pathways that played crucial roles in colorectal cancer progression. Module-based survival analysis constructed four survival-related networks in which pairwise gene correlations were significantly correlated with colorectal cancer patient survival. Overall, the series of evaluations demonstrated the great potential of Correlation-based Local Approximation of Membership for identifying modular biomarkers for complex diseases. We implemented Correlation-based Local Approximation of Membership as a user-friendly application available at https://github.com/free1234hm/CLAM.

6.
Int J Biol Macromol ; 231: 123279, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36657549

RESUMO

A certain proportion of pre-miRNAs, which contained potential G-quadruplex forming sequences, was found to act as a mediator to Dicer-mediated cleavage, and that the regulation of miRNA production and function may be achieved through the G-quadruplex structure. In this study, human precursor miR-1587 sequence was transfected after the incubation with different solution conditions (K+, TMPyP4, etc.). Firstly, the formation of G-quadruplex from precursor miR-1587 sequences was confirmed by CD and UV melting. The expression of miR-1587 level was then evaluated by Q-RT-PCR, and the results showed that the formation of G-quadruplex inhibited the miR-1587 maturation process, resulting in a reduced miR-1587 expression. Meanwhile the destabilization of G-quadruplex led to an increased miR-1587 expression by contrast. Then, the weakened inhibition of miR-1587 towards its target genes, such as TAGLN or NCOR1, was presented confirming by Q-RT-PCR and western blot. Molecular mechanism by dual-luciferase assays showed that the modulations of miR-1587 expression and function were due to the G-quadruplex structure transformation, but not the simple change of solution conditions. This study highlighted the importance of maintaining specific structures during miRNA biosynthesis and provided a way to alter the function of G-rich precursor miRNAs by modulating molecular conformation using ionic solutions or ligands.


Assuntos
Quadruplex G , MicroRNAs , Humanos , MicroRNAs/genética , Regiões Promotoras Genéticas
7.
J Cosmet Dermatol ; 22(2): 534-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35665590

RESUMO

BACKGROUND: Hypertrophic scars (HTS) result from injury to the skin and represent a clinical burden with limited treatment options. Previously, we demonstrated that statin drugs could attenuate HTS formation, but convenient topical delivery and retention of these drugs at the wound site remains a challenge. AIMS: Here, we aimed to develop a topical cream formulation that can deliver statin drugs simply and conveniently to reduce scar hypertrophy. METHODS: We formulated creams containing 10% pravastatin, 2% simvastatin, and 10% simvastatin. We tested these creams for their ability to reduce scar hypertrophy and attenuate dermal fibrosis in a clinically relevant HTS wound model performed in rabbit ear skin. We also monitored trans-epidermal water loss (TEWL) over the course of wound healing in order to understand the effects of statin treatment on epidermal barrier recovery. RESULTS: Of the three creams formulated, only application of 10% simvastatin cream significantly attenuated hypertrophy of resultant scars compared with vehicle cream application. Application of 10% simvastatin cream resulted in a decrease in macrophage and myofibroblast density at post-operative day 28 (POD28) harvest. Application of 10% simvastatin cream resulted in visible symptoms of dryness and increased TEWL at POD28, but subsequent withdrawal of statin cream treatment resulted in rapid alleviation of dryness and decrease in TEWL back to normal levels. CONCLUSIONS: Our data demonstrate that topical administration of 10% simvastatin cream antagonizes dermal fibrosis and reduces hypertrophy in an HTS model, and withdrawal of the cream enables recovery of epidermal barrier and resolution of skin dryness.


Assuntos
Cicatriz Hipertrófica , Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Coelhos , Cicatriz Hipertrófica/tratamento farmacológico , Cicatriz Hipertrófica/etiologia , Cicatriz Hipertrófica/patologia , Sinvastatina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pele , Hipertrofia/patologia
8.
Front Microbiol ; 13: 1001845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545202

RESUMO

Candida duobushaemulonii, type II Candida haemulonii complex, is closely related to Candida auris and capable of causing invasive and non-invasive infections in humans. Eleven strains of C. duobushaemulonii were collected from China Hospital Invasive Fungal Surveillance Net (CHIF-NET) and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), VITEK 2 Yeast Identification Card (YST), and internal transcribed spacer (ITS) sequencing. Whole genome sequencing of C. duobushaemulonii was done to determine their genotypes. Furthermore, C. duobushaemulonii strains were tested by Sensititre YeastOne™ and Clinical and Laboratory Institute (CLSI) broth microdilution panel for antifungal susceptibility. Three C. duobushaemulonii could not be identified by VITEK 2. All 11 isolates had high minimum inhibitory concentrations (MICs) to amphotericin B more than 2 µg/ml. One isolate showed a high MIC value of ≥64 µg/ml to 5-flucytosine. All isolates were wild type (WT) for triazoles and echinocandins. FUR1 variation may result in C. duobushaemulonii with high MIC to 5-flucytosine. Candida duobushaemulonii mainly infects patients with weakened immunity, and the amphotericin B resistance of these isolates might represent a challenge to clinical treatment.

9.
RSC Adv ; 12(43): 28279-28282, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320276

RESUMO

We report an easy but universal protein modification approach, self-fused concatenation (SEC), to biosynthesize a set of interferon (IFN) concatemers with improved in vitro bioactivity, in vivo pharmacokinetics and therapeutic efficacy over the monomeric IFN, and the results can be positively enhanced by the concatenated number of self-fused proteins.

10.
Emerg Microbes Infect ; 11(1): 1079-1089, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35343400

RESUMO

Rhodotorula mucilaginosa, an environmental yeast widely used in industry and agriculture, is also an opportunistic pathogen resistant to multi-antifungals. During the national surveillance in China, R. mucilaginosa has been documented from various hospitals and regions. At present, the molecular epidemiology of invasive infections caused by R. mucilaginosa and their resistance profiles to antifungals were unknown. Here we collected 49 strains from four hospitals located in different geographic regions from 2009 to 2019 in China, determined their genotypes using different molecular markers and quantified susceptibilities to various antifungals. Sequencing of ITS and D1/D2 regions in rDNA indicated that 73.5% (36/49) of clinical strains belong to same sequence type (rDNA type 2). Microsatellite (MT) genotyping with 15 (recently developed) tandem repeat loci identified 5 epidemic MT types, which accounted for 44.9% (22/49) of clinical strains, as well as 27 sporadic MT types. Microsatellite data indicated that the presence of an epidemic cluster including 35 strains (71.4%) repeatedly isolated in four hospitals for eight years. Single nucleotide variants (SNVs) from the whole genome sequence data also supported the clustering of these epidemic strains due to low pairwise distance. In addition, phylogenetic analysis of SNVs from these clinical strains, together with environmental and animal strains showed that the closely related epidemic cluster strains may be opportunistic, zoonotic pathogens. Also, molecular data indicated a possible clonal transmission of pan echinocandins-azoles-5-flucytosine resistant R. mucilaginosa strains in hospital H01. Our study demonstrated that R. mucilaginosa is a multi-drug resistant pathogen with the ability to cause nosocomial infection.


Assuntos
Antifúngicos , Flucitosina , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Células Clonais , DNA Ribossômico , Filogenia , Rhodotorula
11.
Adv Wound Care (New Rochelle) ; 11(3): 150-162, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34841897

RESUMO

Significance: Scar formation is a natural result of mammalian wound healing. In humans and other mammals, however, deep dermal wounds and thermal injuries often result in formation of hypertrophic scars, leading to substantial morbidity and lending great importance to development of therapeutic modalities for burn scars. Clinical Issues: Thus, preclinical burn wound models that adequately simulate processes underlying human burn-induced wound healing, particularly those processes leading to chronic inflammation and development of hypertrophic scars, are critical to developing further treatment paradigms for clinical use. Approach: In this study, we review literature describing various burn models, focusing on their characteristics and the functional readouts that lead to generation of useful data. We also briefly discuss recent work using human ex vivo skin culture as an alternative to animal models, as well as our own development of rabbit ear wound models for burn scars, and assess the pros and cons of these models compared to other models. Future Direction: Understanding of the strengths and weaknesses of preclinical burn wound models will enable choice of the most appropriate wound model to answer particular clinically relevant questions, furthering research aimed at treating burn scars.


Assuntos
Queimaduras , Cicatriz Hipertrófica , Animais , Queimaduras/complicações , Queimaduras/terapia , Cicatriz Hipertrófica/etiologia , Modelos Animais de Doenças , Coelhos , Pele/patologia , Cicatrização
12.
Front Cell Infect Microbiol ; 11: 739496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778103

RESUMO

Diutina catenulata (Candida catenulata) is an ascomycete yeast species widely used in environmental and industrial research and capable of causing infections in humans and animals. At present, there are only a few studies on D. catenulata, and further research is required for its more in-depth characterization and analysis. Eleven strains of D. catenulata collected from China Hospital Invasive Fungal Surveillance Net (CHIF-NET) and the CHIF-NET North China Program were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry and internal transcribed spacer sequencing. The antifungal susceptibility of the Diutina catenulata strains was tested using the Clinical and Laboratory Standards Institute broth microdilution method and Sensititre YeastOne™. Furthermore, ERG11 and FKS1 were sequenced to determine any mutations related to azole and echinocandin resistance in D. catenulata. All isolates exhibited low minimum inhibitory concentration (MIC) values for itraconazole (0.06-0.12 µg/ml), posaconazole (0.06-0.12 µg/ml), amphotericin B (0.25-1 µg/ml), and 5-flucytosine (range, <0.06-0.12 µg/ml), whereas four isolates showed high MICs (≥4 µg/ml) for echinocandins. Strains with high MIC values for azoles showed common ERG11 mutations, namely, F126L/K143R. In addition, L139R mutations may be linked to high MICs of fluconazole. Two amino acid alterations reported to correspond to high MIC values of echinocandin, namely, F621I (F641) and S625L (S645), were found in the hot spot 1 region of FKS1. In addition, one new amino acid alteration, I1348S (I1368), was found outside of the FKS1 hot spot 2 region, and its contribution to echinocandin resistance requires future investigation. Diutina catenulata mainly infects patients with a weak immune system, and the high MIC values for various antifungals exhibited by these isolates may represent a challenge to clinical treatment.


Assuntos
Antifúngicos , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Humanos , Testes de Sensibilidade Microbiana , Saccharomycetales
13.
Sci Adv ; 7(43): eabh2929, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34669478

RESUMO

Liquid-liquid phase separation is emerging as a crucial phenomenon in several fundamental cell processes. A range of eukaryotic systems exhibit liquid condensates. However, their function in bacteria, which, in general, lack membrane-bound compartments, remains less clear. Here, we used high-resolution optical microscopy to observe single bacterial aggresomes, nanostructured intracellular assemblies of proteins, to undercover their role in cell stress. We find that proteins inside aggresomes are mobile and undergo dynamic turnover, consistent with a liquid state. Our observations are in quantitative agreement with phase-separated liquid droplet formation driven by interacting proteins under thermal equilibrium that nucleate following diffusive collisions in the cytoplasm. We have found aggresomes in multiple species of bacteria and show that these emergent, metastable liquid-structured protein assemblies increase bacterial fitness by enabling cells to tolerate environmental stresses.

14.
Front Cell Infect Microbiol ; 11: 662404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485169

RESUMO

Cryptococcus neoformans is an invasive human fungal pathogen that causes more than 181,000 deaths each year. Studies have demonstrated that pulmonary C. neoformans infection induces innate immune responses involving copper, and copper detoxification in C. neoformans improves its fitness and pathogenicity during pulmonary C. neoformans infection. However, the molecular mechanism by which copper inhibits C. neoformans proliferation is unclear. We used a metallothionein double-knockout C. neoformans mutant that was highly sensitive to copper to demonstrate that exogenous copper ions inhibit fungal cell growth by inducing reactive oxygen species generation. Using liquid chromatography-tandem mass spectrometry, we found that copper down-regulated factors involved in protein translation, but up-regulated proteins involved in ubiquitin-mediated protein degradation. We propose that the down-regulation of protein synthesis and the up-regulation of protein degradation are the main effects of copper toxicity. The ubiquitin modification of total protein and proteasome activity were promoted under copper stress, and inhibition of the proteasome pathway alleviated copper toxicity. Our proteomic analysis sheds new light on the antifungal mechanisms of copper.


Assuntos
Criptococose , Cryptococcus neoformans , Cobre/toxicidade , Humanos , Proteômica , Virulência
15.
Nucleic Acids Res ; 49(18): e108, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34313778

RESUMO

Time-series gene expression profiles are the primary source of information on complicated biological processes; however, capturing dynamic regulatory events from such data is challenging. Herein, we present a novel analytic tool, time-series miner (TSMiner), that can construct time-specific regulatory networks from time-series expression profiles using two groups of genes: (i) genes encoding transcription factors (TFs) that are activated or repressed at a specific time and (ii) genes associated with biological pathways showing significant mutual interactions with these TFs. Compared with existing methods, TSMiner demonstrated superior sensitivity and accuracy. Additionally, the application of TSMiner to a time-course RNA-seq dataset associated with mouse liver regeneration (LR) identified 389 transcriptional activators and 49 transcriptional repressors that were either activated or repressed across the LR process. TSMiner also predicted 109 and 47 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways significantly interacting with the transcriptional activators and repressors, respectively. These findings revealed the temporal dynamics of multiple critical LR-related biological processes, including cell proliferation, metabolism and the immune response. The series of evaluations and experiments demonstrated that TSMiner provides highly reliable predictions and increases the understanding of rapidly accumulating time-series omics data.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/metabolismo , RNA-Seq/métodos , Fatores de Transcrição/metabolismo , Transcriptoma , Animais , Bases de Dados Genéticas , Camundongos
16.
Cell Mol Life Sci ; 78(14): 5469-5488, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34100980

RESUMO

Within an articulately characterized family of ion channels, the voltage-gated sodium channels, exists a black sheep, SCN7A (Nax). Nax, in contrast to members of its molecular family, has lost its voltage-gated character and instead rapidly evolved a new function as a concentration-dependent sensor of extracellular sodium ions and subsequent signal transducer. As it deviates fundamentally in function from the rest of its family, and since the bulk of the impressive body of literature elucidating the pathology and biochemistry of voltage-gated sodium channels has been performed in nervous tissue, reports of Nax expression and function have been sparse. Here, we investigate available reports surrounding expression and potential roles for Nax activity outside of nervous tissue. With these studies as justification, we propose that Nax likely acts as an early sensor that detects loss of tissue homeostasis through the pathological accumulation of extracellular sodium and/or through endothelin signaling. Sensation of homeostatic aberration via Nax then proceeds to induce pathological tissue phenotypes via promotion of pro-inflammatory and pro-fibrotic responses, induced through direct regulation of gene expression or through the generation of secondary signaling molecules, such as lactate, that can operate in an autocrine or paracrine fashion. We hope that our synthesis of much of the literature investigating this understudied protein will inspire more research into Nax not simply as a biochemical oddity, but also as a potential pathophysiological regulator and therapeutic target.


Assuntos
Fibrose/fisiopatologia , Homeostase , Inflamação/fisiopatologia , Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Humanos , Transdução de Sinais , Canais de Sódio Disparados por Voltagem/genética
17.
Cytotherapy ; 23(8): 672-676, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33423866

RESUMO

BACKGROUND AIMS: The treatment and care of human wounds represent an enormous burden on the medical system and patients alike. Chronic or delayed healing wounds are characterized by the inability to form proper granulation tissue, followed by deficiencies in keratinocyte migration and wound re-epithelialization, leading to increased likelihood of infection and poor wound outcomes. Human reticular acellular dermal matrix (HR-ADM) is one type of tissue graft developed to enhance closure of delayed healing wounds that has demonstrated clinical utility through accelerating closure of lower extremity diabetic ulcers, but the mechanisms underlying this clinical success are not well understood. METHODS: The authors utilized a diabetic murine splinted excisional wound model to investigate the effects of HR-ADM application on wound closure. RESULTS: The authors demonstrate that application of HR-ADM served as a dermal scaffold and promoted rapid re-epithelialization and keratinocyte proliferation, resulting in accelerated wound closure while minimizing granulation tissue formation. HR-ADM-applied wounds also demonstrated evidence of cellular infiltration, neovascularization and collagen remodeling by the host organism. CONCLUSIONS: These data suggest that HR-ADM supports epidermal closure in delayed healing wounds and remodeling of the matrix into host tissue, lending further support to the clinical success of HR-ADM described in clinical reports.


Assuntos
Derme Acelular , Diabetes Mellitus , Aloenxertos , Animais , Humanos , Camundongos , Reepitelização , Cicatrização
18.
Wound Repair Regen ; 29(2): 306-315, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33378794

RESUMO

Mammalian wound healing is a carefully orchestrated process in which many cellular and molecular effectors respond in concert to perturbed tissue homeostasis in order to close the wound and re-establish the skin barrier. The roles of many of these molecular effectors, however, are not entirely understood. Our lab previously demonstrated that the atypical sodium channel Nax (encoded by Scn7a) responds to wound-induced epidermal dehydration, resulting in molecular cascades that drive pro-inflammatory signaling. Acute inhibition of Nax was sufficient to attenuate dermatopathological symptoms in models of hypertrophic scar and dermatitis. To date, however, the role of Nax in excisional wound healing has not been demonstrated. Here we report development of a knockout mouse that lacks expression of functional Nax , and we demonstrate that lack of functional Nax results in deficient wound healing in a murine splinted excisional wound healing model. This deficiency in wound healing was reflected in impaired re-epithelialization and decreased keratinocyte proliferation, a finding which was further supported by decreased proliferation upon Nax knockdown in HaCaT cells in vitro. Defective wound healing was observed alongside increased expression of inflammatory genes in the wound epidermis of Nax -/- mice, suggesting that mice lacking functional Nax retain the ability to undergo skin inflammation. Our observations here motivate further investigation into the roles of Nax in wound healing and other skin processes.


Assuntos
Reepitelização , Cicatrização , Animais , Camundongos , Camundongos Knockout , Pele , Canais de Sódio , Cicatrização/genética
19.
BMC Microbiol ; 20(1): 158, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532202

RESUMO

BACKGROUND: To investigate the species distribution of non-tuberculous mycobacteria (NTM) among tuberculosis (TB) specimens collected from January 2013 to December 2018 at Peking Union Medical Hospital (Beijing), China. NTM species identification was carried out by DNA microarray chip. RESULTS: Mycobacterial species were detected in 1514 specimens from 1508 patients, among which NTM accounted for 37.3% (565/1514), increasing from a proportion of 15.6% in 2013 to 46.1% in 2018 (P < 0.001). Among the 565 NTM positive specimens, the majority (55.2%) were from female patients. Furthermore, patients aged 45-65 years accounted for 49.6% of the total patients tested. Among 223 NTM positive specimens characterized further, the majority (86.2%) were from respiratory tract, whilst 3.6 and 3.1% were from lymph nodes and pus, respectively. Mycobacterium intracellulare (31.8%) and Mycobacterium chelonae / Mycobacterium abscessus (21.5%) were the most frequently detected species, followed by M. avium (13.5%), M. gordonae (11.7%), M. kansasii (7.6%), and others. CONCLUSION: The proportion of NTM among mycobacterial species detected in a tertiary hospital in Beijing, China, increased rapidly from year 2013 to 2018. Middle-aged patients are more likely to be infected with NTM, especially females. Mycobacterium intracellulare and Mycobacterium chelonae/ Mycobacterium abscessus were the most frequently detected NTM pathogens. Accurate and timely identification of NTM is important for diagnosis and treatment.


Assuntos
Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Micobactérias não Tuberculosas/classificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Adulto , Fatores Etários , China/epidemiologia , DNA Bacteriano/genética , Feminino , Humanos , Linfonodos/microbiologia , Masculino , Pessoa de Meia-Idade , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/isolamento & purificação , Prevalência , Sistema Respiratório/microbiologia , Estudos Retrospectivos , Supuração/microbiologia , Centros de Atenção Terciária
20.
Biophys J ; 118(1): 4-14, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31810660

RESUMO

The electrical membrane potential (Vm) is one of the components of the electrochemical potential of protons across the biological membrane (proton motive force), which powers many vital cellular processes. Because Vm also plays a role in signal transduction, measuring it is of great interest. Over the years, a variety of techniques have been developed for the purpose. In bacteria, given their small size, Nernstian membrane voltage probes are arguably the favorite strategy, and their cytoplasmic accumulation depends on Vm according to the Nernst equation. However, a careful calibration of Nernstian probes that takes into account the tradeoffs between the ease with which the signal from the dye is observed and the dyes' interactions with cellular physiology is rarely performed. Here, we use a mathematical model to understand such tradeoffs and apply the results to assess the applicability of the Thioflavin T dye as a Vm sensor in Escherichia coli. We identify the conditions in which the dye turns from a Vm probe into an actuator and, based on the model and experimental results, propose a general workflow for the characterization of Nernstian dye candidates.


Assuntos
Corantes/metabolismo , Fenômenos Eletrofisiológicos , Escherichia coli/fisiologia , Calibragem , Permeabilidade da Membrana Celular , Escherichia coli/citologia , Escherichia coli/metabolismo , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...